Skip to main content
Q. A bar code scanner scans the boxes being shipped from the loading dock and records all
the codes in memory starting from AB00H; the end of the data is indicated by the byte
00H. The code 0010 0001 is assigned to 21 inches television sets. Write a program to
count the number of 21 inches television sets that were shipped from the loading dock.

Solution:
LXI H, AB00H
MVI C, 00H
LABEL1: MOV A, M
CPI 00H ; check for the end of the data 00H
JZ END
CPI 21H ; check for code 0010 0001 (21H)
JNZ LABEL2
INR C
LABEL2: INX H
JMP LABEL1
END: MOV A, C ; store the count at BB00H (not mentioned in the question)
STA BB00H
HLT

Comments

Popular posts from this blog

2017//2(b)//Engineering Eco//KU

A loan of $10,000 is to be repaid over a period of eight years. During the first four years, exactly half of the loan principal is to be repaid (along with accumulated compound interest) by a uniform series of payments of A1 dollar per year. The other half of the loan principal is to be repaid over four years, with accumulated interest, by a uniform series of payments of A2 dollar per year, If i=9% per year, what are A1 and A2?

Testing servo motor with arduino

  Testing servo motor with arduino  Components Needed: Arduino board (e.g., Arduino Uno) Servo motor Jumper wires Steps for Connection: Servo Motor Pins: Ground (GND): Usually the brown or black wire of the servo motor. Power (VCC): Usually the red wire of the servo motor. Control Signal (PWM): Usually the yellow, orange, or white wire of the servo motor. Connecting to Arduino: Ground (GND): Connect the ground wire of the servo motor to one of the GND pins on the Arduino. Power (VCC): Connect the power wire of the servo motor to the 5V pin on the Arduino. Control Signal (PWM): Connect the control signal wire of the servo motor to digital pin 9 on the Arduino, as specified in the code by myservo.attach(9); Connection Arduino  Servo motor  VCC/ 5V Red wire  GND Black Wire  9  Yellow wire Explanation: Ground (GND): This connection ensures that the servo motor and the Arduino share a common ground, which is necessary for proper operation. Power (VCC): The servo motor needs a power supply t

CanSat

  CanSat is a type of small satellite that is designed to fit inside a soda can. These miniature satellites are used for a variety of purposes, including educational projects, scientific research, and commercial applications. The CanSat concept was first developed in 1998 by Bob Twiggs, a professor at Stanford University, and Jordi Puig-Suari, a professor at California Polytechnic State University. They wanted to create a low-cost, hands-on way for students to learn about satellite technology and space science. Since then, CanSats have become a popular platform for educational projects around the world. They are often used in STEM (Science, Technology, Engineering, and Mathematics) education programs, where students are tasked with designing, building, and launching their own CanSats. A typical CanSat consists of a soda can-sized container that houses a variety of sensors, such as temperature, humidity, pressure, and acceleration sensors. It also includes a small computer, a radio tran